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We consider the problem of a layered-nonhomogeneous body such that the elas-
tic constants of the isotropic medium depend exponentially on the Cartesian
coordinates, Poisson's ratio is assumed to be constant. Making use of the Airy
stress function and of expansions with respect to a small parameter, we construct
the solution of the first fundamental boundary value problem of the plane elas-
ticity theory for a circular domain when on the circumference we are given the
radial stresses as continuows functions of bounded variation of the polar angle.

This problem has been investigated in [1] by the method of successive appro-
ximations with the aid of the complex representations given by the authors of
[2 - 4], The convergence of the successive approximation process has not been
proved.

In problems with nonhomogeneous elasticity the complex representations pre=
sent no advantage, therefore we will apply the Airy function method in that ver-
sion in which it was used in [5], in conjunction with expansions withrespect to a
small parameter, characterizing the nonhomogeneity, We give a recursion pro-
cess in order to compute the functions which are the coefficients of the power
series and we prove the convergence of this series, An example is given,

1, In the plane problem for a nonhomogeneous isotropic medium with a constant
Poisson's ratio v, with a nonhomogeneity in the form of an exponential function and in
the absence of body forces and temperature stresses, the equation for the Airy function
F in polar coordinates has the form
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where g is a small parameter characterizing the exponential dependence Rk = [ o€%*
of the modulus of elasticity of the medium, Here z is 2 dimensionless abscissa related
to the radius of the circle r == a. At the boundary of the domain the stress function
F (r, @) satisfies the boundary condition
1 oF 2F
-+ %-:?: - =@ (1.2)
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In addition, F (r, ¢) is bounded for r = (. The solution is sought in the class of
analytic functions in the form of a power series in the small parameter g
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Fri@ =Fo(r@) +aF1(r,®) + @F, (@) + ... + ¢*Fn (7, @) + -
(1.9)
The first term of the series (1, 3) corresponds to a body subject to the same load but
assumed to be homogeneous, The subsequent terms introduce the corrections due to the
nonhomogeneity, As a result of inserting (1, 3) into Eq, (1.1) and taking into account
the boundary conditions (1,2), we obtain the following system of boundary value prob-
lems for the coefficients of the series (1, 3) with the corresponding boundary conditions:
1) AAF, = 0, where F, satisfies the boundary condition

1 8F, | 4 &F,

r or T OP? |rmmy =3 (1.4)
oqe<2m

and Fy (r, @) is bounded for r = 0;
2)  AAF, = —2PF,

AAF, = —~ 2PF,  — AF,_, + —— 1 QFn_z, n=2,3,... (1.5)
where all F, (r, 9) (n = 1, 2, 3, ...) satisfy the zero condition at the boundary of
the domain, i, e, 18 Fﬂ 4 3 F" _0 L6

- or TR 002 |rmy - (1.6)
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and, in addition F, (r, @) are bounded for r = 0.
Making use of the solution of the first fundamental boundary value problem for a
homogeneous medium, given in [4], Sect, 54, we have
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where a,, a,, 3, are the coefficienm in the expansion of ¢ (@) in a Fourier serfes

S(p) = —- -+ 2 (Gm cOS Mm@ <+ By, sin M) (1.8)
ms=1
The remaining coefficients of the series (1. 3) have to be d:termined from the recursion
system (1, 5) with boundary conditions (1.6). We assume that the coefficients up to the
(n — 1)-st inclusively, have been found, Then the left-hand side of Eq, (1. 5) represents
a continuous function of both arguments (by virtue of the properties of the operators £,
Q, A) and can be represented by the trigonometric series

O, 9) =ao(r)+ 2, @ (r)cOsm@ —+ b, (r) sinme (1.9

M=)

We seek the solution of Eq, (1. 5) with the boundary conditions (1. 6) in the form

Falr,®) =fo" (1) + 2 fn"(r) cosm@ + g™ () sinme  (1.10)
M=}
Here and in the sequel, the superscript of the coefficients of the series expansions indi-
cates the index of the coefficient of the series (1, 3) for which the expansion is obtained,
Inserting (1.10) and (1, 9) into Eq, (1. 5), we separate the variables and we obtain a sys=
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tem of differential equations for the coefficients f,," and gn" (m = 0, 1, 2, ...) of

the series (1,10) 1 d dz
(\-;-?;-I";,T)zfo"(r):ao(r)
1, [l \ d’.’. 1 2 n '
(FF gm0 =0 (40

....................

(Fa+ar =2 " ) = am ()

From the boundary conditions (1. 6) we obtain the conditions for f," (r) at the bound-
ary of the domain

4o
rodr fres
1 df " m2
——— = I =0, m=123,... (1.12)

We have similar equations and boundary conditions for g,," (). In addition, f,," (r)
and £m" (r) must be bounded for r = (). The Green functions for each of the equa-
tions of the system (1,11) with the boundary conditions (1, 12) allow us to define
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byt o %
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/]
where I'g (r, &), T'm (7, E) are the Green functions for the boundary value problems
(1.11) with the boundary conditions (1.12) '
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Thus we obtain
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Here and in the sequel, the dots in the brackets at Sin mo (m = 1, 2, 3, ...) indicate
that in the brackets we have the same polynomial in r as at cos m@ with e substitu-
tion of @m by B,,. As before, @,, and (3, are the coefficients of the Fourier series
(1. 8)0

By mathematical induction we can prove that the nth coefficient of the series (1, 3)

has the form - T o .
— n n "o
Fn (r, (P) == m Lao 4+ Zlam cos moQ - bm sin m(p] (1.16)
A=n/2 for n=0, n=2 (mod 4)

A=(n—1)/2 for n==1, n= 3 (mod 4)

where the coefficients of cos mo and sin me (m = 0, 1, 2, ...) are polynomials in

r of the form
ap" = 0-::. maznial mean+d + 0-:-. m+an ol +...+ am, m«n"mH + U-?n, mr
b = B, magnaa? T B maan T oo B, maaT ™ B Wl

In addition, from the Eq, (1, 5) it follows that @»" and b,," can be expressed in terms

of the coefficients of the expansions of F,-, and F,_,. From (1.16) and (1,13) we

obtain by straightforward computation the expressions for a,,"
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1—2v o O
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6-—{1 for n=0, n= 2 (mod 4)
T 0 for n=1, n=3 (mod 4)

The coefficients b,™ for the corresponding values of 2 are obtained from (1.17) by
changing agp , into By ,.
2, We define the norm of the function F (r, @) as the sum of the absolute values
of the coefficients of its expansion in the trigonomerric series (1.10)
-

IF0(, D= 3 (") + 1gn™ (1D
Mmand)
According to this definition

lo@l=13L+ 3 (am|+1BaD=C
From (1, 16) we have ™=l

i 1 n
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From (1.14) and (1.15) we obtain at once
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The formulas (1,17) allow us to estimate | ajy mip | 30d | am, mp | for p =0, 2, 4,
.. 10. we obtain
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By mathematical induction, with the aid of the formulas (1,17), we can prove that
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32n-2)
G, m«|<m | Ctmnsa |

and | ap, meq| is the greatest among | am,ms+p | for p=4, 6, ..., 2n4+-2, From
(1.17) for n = 1, n = 3 (mod 4) we have '

,amn[<2(n+ 1)10':; m+2ﬂ+2l'L2n|a;‘n m+2nl+2(n‘—1)la:u,m+zn-z'+ .

2)
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The estimate obtained holdsfor m > (n—1). Fdoe 0 < m << n — 2
3%n-9p (n 4. 3)
l%"l<ml%|

This follows from the properties of the operators P and Q which occur in the left-hand
side of Eq, (1.5). Thus

3)
" () < Ze IR vl m

+3)
T,

" (1< oSm<n—2

Similar estimates are obtained for | &m (1) | . From here we obtain the following esti~

mate for || F, ||: 0D (3 4 3 (n—2) C
- 1

"Fﬂ(r’ ¢)H< 2’"(1_.‘,)\

Cr=lag|+ B+ 15 @] =|ae]l+ BRI+ C
Thus, the series (1. 3) is majorized by the series
i 3%V (n L 3) (n—2) C
A
= ra—y
which converges absolutely for | ¢ | << /5.
. It should be noted that actually the boundary of the couvergence of the series (1, 3) is

much wider, Moreover, as it will be proved later, even for| g | = 1.6 the series con-
verges sufficiently fast,

n

q

38, The solution of the first fundamental boundary value problem for a nonhomogen-
eous circular domain, loaded on the contour by a uniform radial stress o (9} = p, is ob=
tained from the solution for the general case,

Thus, from (1.7),(1,14), (1.15) and from the subsequent expressmns for Fy, Fy, Fy
we have

1 1—2v
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1 —2v 3—2v dv—17 4L 544 ’
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From here we obtain the expressions for the stress components, corresponding to the first
five terms of the series (1. 3)
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Table 1.
.
Stresses 0.0 0.2 0.4 0.6 0.8 1.0
g,, =Sy | 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
Cpy 1.09143 1.08777 1.07680 1.058514 1.03291 1.00000
Cpy 1.09143 1.09713 1.09318 1.07723 1.04695 1.00000
Opy 1.08064 1.08753 1.08676 1.07490 1.04764 1.00000
Sps 1.08064 1.08839 1.08769 1.07400 1.04703 1.00000
Spg = G5, | 1.00000 1.00000 1.00000 1.00000 1.00000 1.,00000
Sen 1.09143 1.08046 1.04754 0.99269 0.91589 0.81714
Oug 1.09143 1.10777 1.09045 1.02780 0.90809 0.71962
Cus 1.07438 1.09569 1.09077 1.04044 0.92044 0.70152
Sy 1.,07438 1.09137 1.08537 1.03847 0.92371 0.70323
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In Table 1 we give the values of the successive approximations for the stress compon-
ents in the form

1 , ‘ 1 . - L.
"‘ma'—p_(sr"‘%'crl“k‘--'fs"n)’ Son =3 % togt . 5T

for the values ¢ = 0, ¢ = —1.6, v = 0.3, which comrespond to the values of the para-
meters in [1], This allows us to compare the resuits,

Thus, the presence of nonhomogeneity implies the formation of shear swesses, although
insignificant in magnitude, In addition a quantitative variation of the maximal values
of o, by 9% and of o, by 30%, is observed,
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We consider some problems of magnetoelastic oscillations of thin electrically
conducting plates and shells situated in a stationary magnetic field, On this basis
of the solutions, obtained by the method of asymptotic integration of the three-
dimensional equations of magnetoelasticity, we formulate a hypothesis relative
to the character of the variation of the electromagnetic field and of the elastic
displacements along the thickness of the shell, This allows us to reduce the
three~dimensional equations of magnetoelasticity to two-dimensional ones, which
facilitates in an essential way the study of the magnetoelastic problems of thin
bodies,

The problem of the investigation of magnetoelastic oscillations of electrically
conducting shells in 2 magnetic field reduces to the simultaneous solution of the
equations of magnetoelasticity 1n the domain occupied by the shell and the
equations of the electrodynamics in the exterior of the shell, The equations of



